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Research related to flow over aerodynamic bodies and to advanced nuclear
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Division, NASA Lewis Researe¢h Center as Technical Manager. A part of this
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ABSTRACT

The steady-state flow characteristics in a rectangular cavity located
in the lower wall of a two-dimensional channel whose upper wall was moved
with a uniform velocity, were investigated by solving the complete Navier-
Stokes equations for laminar incompressible fluid in terms of the stream
function and vorticity. Numerical results were determined for a range of
Reynolds numbers from 1 to 500 and for cavity aspect ratios of 0.5, 1.0
and 2.0. A circulating flow extending the whole height was observed for
shallow and square cavities. For deep cavity a secondary vortex near the
bottom of the cavity was also noticed.

Time-dependent solutions for the vortex flow in a square cavity bounded
by three motionless walls and a fourth moving in its plane were obtained

for N_ = 10.0 and aspect ratio of 1.0.

]
Re






TABLE OF CONTENTS

page
FORWARD civvvvncrvnevennonnnsans O s B
ABSTRACT ...cecenne G eecacencsesrtaceacesansetsteeca s reaseanco s v
LIST OF ILLUSTRATIONS ..... Ceeecescacasssaseseaeaseantsoassecannrans ix
LIST OF SYMBOLS .cesevences cesecatsssesctacennas cecscranans cecsnnse xi
CHAPTER
J. INTRODUCTION sevvecsvncecocancnnsasnnsons ceeciensanns ceesens 1
1.1 Problem Definition
1.2 Phenomenological Discussion
1.3 Historical Background
II. NUMERICAL FORMULATION .veuececcosnccsnasans cetesresesenaens . 11
2.1 Governing Differential Equations
2.2 Boundary and Initial Conditions for the Governing
Differential Equations
2.3 londimensional and Transformed Equations
2.4 Difference Formulations
2.5 Method of Solution
JII. RESULTS AND DISCUSSIONS ....... S e teressestaesecasnectoansons 32
IV. CORCLUSIONS ..... t e e et aeesa et s nenesa et et ee it se st resnas 55
APPENDIX ...vevnnnenns e secteeianseesasaatsaasonseans cecensanns ceenn 5T
REFERENCES ..iseecenerncacensssocsasssossnns Ceescesassaseaseoneanaas T9

vii






Figure

W

10

11

12

13

1k

15
16
7
18

19

20

LIST OF ILLUSTRATIONS

Problem Definition of the Flow Over a Cavity .....

Coordinate System and Velocity Notation ..

Definition of Prototype Problem ....cceveeeecns

The Mapping Function .....eeeeeneesees
Grid Notation .eeeieeeecesenvennsocsnnnes

Comparison with Burggraf. Nﬁe

Constant Streamline Contours.

Ratio = 1.0 ..cccvnn cetearen

Constant Streamline Contours.

Ratio = 1.0 .......... ceeees

Constant Streamline Contours.

1
NRe

1
NRe

Ratio = 1.0 .eiiiniearennnnnnnaaas

Constant Streamline Contours.

0, Aspect Ratio =

1.0, Aspect

10.0, Aspect

1.0 ..

= 100.0, Aspect

Ratio = 1.0 ....ccvoaan Ceeeceei e e tseceerecaenoseann

Constant Streamline Contours.

Ratio = 0.5 ...... ceeeeen Ceeanen .

Constant Streamline Contours.
Ratio = 0.5 teteeeneeeeeesosesnesonensaasoansnosnnses .

Constant Streamline Contours.

Ratio = 2.0 it iiteeiineesaasasostonsossnsesssnesccaaaanssans

Constant Streamline Contours.

Ratio - 2.0 ......... e ee e ia sttt ..

% %
Variation of u with respect to z aty =

Effect of Changing Ay*  on Vorticity at

Effect of Changing Az"

Constant Streagline Contours.
Ratio = 1.0, t° = 0.02 ......

Constant Streamline Contours.

1
NRe

Ratio = 1.0, t*¥ = 0.06 .........%¢ .

Constant Streamline Contours.

Ratio = 1.0, t* = 0.10 «vceun

on Vorticity at

10.0, Aspect

10.0, Aspect

10.0, Aspect

18

21

25

33

35

36

37

38

39

Lo

L1

Lo

43
L5
46

L

48

L9



Figure

21

22

23

2k

Constant Streamline Contours. Nﬁe = 10.0, Aspect
Ratio = 1.0, t¥ = 0.1 ...... oS, e
Constant Streamline Contours. Née = 10.0, Aspect
Ratio = 1.0, t¥ = 0.31 ..ovvvee i iiiiiiiiinn,
Constant Streamline Contours. Née = 10.0, Aspect
Ratio = 1.0, t¥ = 0.78 .........%.%.. i,
Vortex Development. N! = 10.0, Aspect Ratio = 1.

Re

Page

50

51



LIST OF SYMBOLS

Symbol Description
A Variable defined after equation (2.62)
*
c Az
*
Ay
c,-¢g Constants defined after equation (2.60)
cp 5 C, Variables defined after equation (2.60)
C Variable defined after equation (2.62)
D Variable defined after equation (2.62)
F Body force vector
H Height of the channel
¥ H
H Nondimensional height of the channel, T
He Height of the cavity
H
*
He Nondimensional height of the cavity, Ig
L Length of the cavity
umL
NEe Reynolds number, —
' wm
NRe Reynolds number, v
P Pressure
t Time
* lpm
t Nondimensional time, — t
.2
u Velocity vector
U,V,wW Components of velocity vector, u in x, y, and z directions
* * * L
u Nondimensional velocity in x or z direction, E— u
m
* . . x . . L
v Nondimensional velocity in y —dlrectlon,'a— v
m

xi



Symbol

Description
Velocity of the moving wall

Nondimensional velocity of the moving wall, %&- u
m

Distance along the length of the cavity

K

Nondimensional distance along the length of the cavity,

Distance along the height of the cavity

Nondimensional distance along the height of the cavity,

Transformed coordinate defined by equation (2.39)
First derivative of transformation

Second derivative of transformation

%*
z —coordinate of the wupstreamcorner

%
z -coordinate of the downstream corner

¥
Overrelaxation parameter for

. *
Relaxation coefficient of n , defined after equation (2.60)

Operator, defined on page 28

Components of vorticity vector, w

2
.wn

m

Nondimensional component of vorticity in z-direction,

. . . *
First approximation of n at new time step

Coefficients of viscosity
Kinematic coefficient of viscosity
Density

Stokes stream function

Nondimensional stream function, %—
m

xii



Symbol Description

wm Maximum value of stream function

w Vorticity vector, Vxu

Ay* Grid size in y*—direction

Az* Grid size in é*—direction

v Del operator

v2 Laplacian operator

Vx Curl operator

A Operator, defined on page 28

A? Operator, defined on page 28
Subscripts

i Grid point number in y*-direction

J Grid point number in z*rdirection

y* Independent variable of the operator 8§ or A or A2

2* Independent variable of the operator § or A or A2
Superscripts

n Jteration number

m Time level

xiii



CHAPTER I
INTRODUCTION
On airfoils at large angles of attack, the adverse pressure gradient

frequently causes laminar separation near the leading edge resulting in a
severe stall condition. If such early separation does not occur, the flow
invariably separates near the trailing edge causing much milder stall. Flow
separation on aerodynamic surfaces can also be due to the presence of per-
turbances and cavities, as in the cases of finned surfaces, turbine flow
passages, bomb bays, windows, and so on. Cavity flow problem is a special
case of the general problem of separation, having most of the flow character-
istics of the latter. Hence, in this study cavity flow has been investiga-
ted with the motivation of obtaining a better understanding of the phenomena

of flow separation and vortex formation.

1.1 Problem Definition

The purpose of the present study is to investigate the flow character-
istics in a rectangular cavity, located in the lower wall of a two-dimensional
channel. The nature of the vortex formed in the cavity will depend on the
Reynolds number and the height to length ratio (the aspect ratio) of the
cavity. This ratio together with the channel height and length defines the

geometry. The nature of the flow approaching the cavity would also influence

the vortex. However, for simplification, the length of the channel was taken to

be infinite and the upper wall of the channel was moved with a constant velc-
city thus keeping the flow approaching the cavity identical in all cases.
This also facilitates defining the conditions at the upstream and the down-
stream boundaries of the channel.

The problem thus relates to the flow over a rectangular cavity in the

lower wall of a two-dimensional infinite channel where the upper wall



is moving with a uniform velocity (Fig. 1). The flow is assumed to be
laminar, incompressible and Newtonian. The results are obtained for dif-
ferent aspect ratios and Reynolds numbers. To magnify the phenomena of
separation and vortex formation the aspect ratios were chosen to give the

reattachment of the flow over the cavity and not inside it.

1.2 Phenomenological Discussion

A laminar separated flow can be defined as a separated flow in which
all shear layers of importance to the problem are completely laminar. The
separation and the reattachment of the flow over the cavity results in one
or more eddies in the cavity (Fig. 1). One can decompose the separated flow
into six more or less distinct parts: (1) separation point region, (2) free
shear layer, (3) reattachment point, (4) main recirculating eddy, (5) corner
eddies, and (6) external stream.

Kistler and Tanl define the separation point as the point where a
streamline in the neighborhood of the surface breaks abruptly away from
the surface. The streamline that passes through this separation point serves
as a boundary between the fluid in the channel and that in the cavity. The
shear layer in the neighborhood of this dividing streamline is called the

free shear layer. The reattachment point is the stagnation point where part

of the flow is turned back into the separated region and part moves away
from this region. The flow within the separated region is made up of one

or more eddies with streamlines that close on themselves.

1.3 Historical Background

During the fifteenth century Leonardo da Vinci observed and sketched
recirculating eddies in the flow over various configurations. However, de-
tailed studies of cavity flow were carried out only recently. These investi-

gations generally consider steady plane flow of an incompressible Newtonian



u
_rn_».
LU LS LA A P L L L L

—_— EXTERNAL STREAM —p—

FREE SHEAR LAYER

T 7777777 777777777
SEPARATION POINT——/

(UPSTREAM CORNER)

REATTACHMENT POINT
(DOWNSTREAM CORNER)

;

——_—_—_—_—_—__r TR

SAANAANN

RECIRCULATING
EDDY

NN

AN

| ()=-CORNER EDDY—=-£)
YA

N\

FIGURE |, PROBLEM DEFINITION OF THE FLOW OVER A CAVITY



fluid in a rectangular cavity bounded by three motionless walls and by a
fourth moving in its own plane. This is the prototype of practical flow
problems in which the fluid moves over a cavity.

A model proposed by Batchelor2 has been frequently used in analyzing
cavity flow. According to this model, the limiting (i.e. as p tends to zero)
laminar flow consists of a finite wake embodying a residual recirculating
eddy having uniform vorticity. 1In cavity flow the separation region is
knows to be of finite extent. For such problems, Batchelor's model appears
to be correct for the limit NRe > © ., This is based on the assumption that
viscous effects are restricted to a thin layer along the separation stream-
line. Then an exact intergral theorem derived from the Navier-Stokes equa-
tions for steady flow shows that the vorticity is uniform. The specific
value of the vorticity is obtained by matching the external boundary conditions
using the boundary layer equations. Other theoretical models were also pro-
posed3 for separated flows, but with the exception of the complete Navier-
Stokes equations, none has been accepted as having general sound basis.

Millsh carried out an analytical study of the prototype problem for a
square cavity using Batchelor's model. He obtained a solution of a linearized
form of Von Mises' equation for steady flow in the boundary layer for con-
stant and varying pressures around the walls of the cavity. From this analysis
the vorticity imparted to the core is obtained and is used to determine the
motion in the core. Mills also performed experiments to verify his analysis.
The measured velocity profiles were in qualitative agreement with the analysis.
However, the measured vorticity of the inviscid core was about 1/3 the pre-
dicted value. This error was attributed to the gap between the fixed walls
and the moving wall.

5

Burggraf3, Mills” and Kawaguti6 have solved the same problem numerically
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using stream function and vorticity equation. Burggraf solved it for a

.square cavity for a range of Reynolds number from 0 to hOQ. Mills solved

it for aspect ratios of 0.5, 1.0 and 2.0 for NRe = 100. Whereas, Kawaguti
considered aspect ratios of 0.5, 1.0 and 2.0 and a range of Reynolds number
from 0 to 6L4.

They employed central differences to formulate the finite difference
equations. Burggraf and Kawaguti chose a square mesh for all aspect ratios,
whereas Mills used it for cavities having aspect ratios of 0.5 and 1.0 only.
Kawaguti first calculated the vorticity at the boundary points and then the
stream function and vorticity at each point in the interior. Mills utilized
Liebmann's iterative technique. He went over the stream function field twice
before entering the vorticity field which was also traversed twice. The
boundary values of vorticity were moved by only one half of the values indi-
cated by the boundary condition, however (as in Kawaguti's treatment) the
values in the field were (mostly) given their full movement. Mills also tried
a single iteration per field and found it better than the above procedure.

On tﬁe other hand, Burggraf underrelaxed both stream function and vorticity

in the interior of the field. During each iteration he considered points in
each row progressively from right to left (the direction opposite to the motion
of the moving wall), with the rows taken in order from top (moving wall) to
bottom. Both Mills and Burggraf employed the corrected values as soon as

they were available. Kawaguti was unable to obtain convergent solution for

NRe = 128.

At higher Reynolds numbers the viscous layer thickness diminishes.
Burggraf observed that in this case the mesh size must be decreased for the
same degree of accuracy and the relaxation (convergence) parameter must then

be decreased for convergence. (Both of these imply an increased number of

iterations.) He also found that for large Reynolds number the mesh size had



a strong influence on the location of the vorteéex center as well as on the
entire flow field. In his study he allowed the maximum machine (IBM T09L)
time for one case to be 30 minutes. This limitation permitted accurate solu-
tions for NRe < L00. However, approximate solutions were obtained for Rey-
nolds numbers of up to 1000.

Mills and Kawaguti reported a circulating flow extending the whole height
for shallow and square cavities. Similar results were reported by Burggraf
for square cavities. Kawaguti found weak secondary flows in a large region
near the bottom of a cavity of aspect ratio 2.0. However, he was unable to
determine the nature of these flows because of a coarse grid and computational
limitations. Mills claims to have obtained this secondary eddy at all Rey-
nolds numbers. According to Kawaguti the center of the vortex moves down-
stream, as the Reynolds number increases. However, the more accurate results
by Burggraf, obtained for a larger range of Reynolds number than those by
Kawaguit showed that the vortex center shifted first in the downstream direc-
tion and then towards the center of the cavity as the Reynolds number was in-
creased. Kawaguti did not observe the corner eddies. Mills reported them
for aspect ratio of 1.0 and Burggraf observes them for all Reynolds numbers
for the same aspect ratio.

Mills compared the theoretical results with photographs of flow patterns.
There was a good correspondence between theoretical and experimental results
for aspect ratio of 0.5. When the aspect ratio was 1.0, the experiments did
not show the two corner eddies which he had predicted theoretically. For
the aspect ratio of 2.0, a second vortex did not appear in the experiment
anywhere in the range O < NRe < 100. (However, it appeared at NRe % 1000.)

These discrepancies were attributed to the difficulty of realizing in the ex-~

periment all the conditions necessary to produce a flow with such a weak vortex.



Burggraf noticed that the vortiecity distribution was symmetric at
NRe = 0. At NRe = 100, a very small inviscid core had developed around the
vortex center, while at NRe = 400, the inviscid core had grown to a diameter
about 1/3 that of the cavity. The corner eddies were of triangular-shape
and they had a diameter of about ten percent that of cavity at NRe = 0.

However, at N = 400, the downstream eddy had grown to about 1/3 the dia-

Re
meter of the cavity, whereas the upstream eddy was relatively unaffected by
the Reynolds number. The strength of the flow field (the maximum value of
the stream function in the cavity) was practically independent of the Rey-
nolds number.

Burggraf acquired analytical solution for the high-Reynolds-number
limit (NRe + o) with the stipulation of Batchelor's uniform vorticity model.
The problem was solved by the use of the finite Fourier transform. The
result brings out the most serious failure of the uniform vorticity model,
namely, the solution doces not show the existence of secondary corner eddies.

Pan and Acrivos7 obtained numerically the creeping flow solutions for
cavities having aspect ratios from 0.25 to 5.0 using the relaxation procedure
employed by Burggraf. The flow in the primary vortex (the one next to the
moving wall) remained unaffected by the location of the bottom wall as long
as the aspect ratio was greater than 2.0. For aspect ratio of 5.0 the
first three vortices had a length to width ratio equal to 1.40. The analy-
tical value of this ratio predicted by Moffatt8 was 1.39.

According to Pan and Acrivos, for a square cavity, even a grid size as
small as 0.01 was still too coarse to reveal the detailed streamline pattern
inside the corner eddies, although it was more than adequate for the solu-

tion in the core of the cavity. The solution in the core remained practi-

cally unaffected by the changes in the structure of the corner vortices. So



an improved solution was computed after convergence in the core was assured,
by subdividing the region around the corners into finer meshes and iterating
further. This process of subdivision was repeated several times. It dis-
closed a sequence of eddies which were amazingly similar and symmetric with
respect to the diagonal of the square cavity. The relative sizes and
strengths of these corner vortices were in excellent agreement with analy-
tical results obtained by'MoffattB. The corner vortices occupied only about
0.5 percent of the total area of the square cavity.

An experimental program was undertaken by Pan and Acrivos to study the
basic features of the steady flow for different Reynolds numbers. They con-
sidered a cavity of a square section in the horizontal plane and with vary-
ing depth (height). They were not able to avoid the presence of three-
dimensional fluid motions near the four intersections of the vertical sides.
However, these motions did not extend into the mid-section, where to all
appearances the flow was indeed two-dimensional.

Pan and Acrivos found that for a square cavity the downstream corner
vortex increased in size from NRe= 0 to NRe= 500, in excellent agreement
with Burggraf's numerical results. With a further increase in the Reynolds
number , this vortex began to shrink slowly, until at NRe= 2700 it retreated
once again into the immediate neighborhood of the cavity cdrner. Hence,
Pan and Acrivos concluded that, for a cavity of a finite ratio, to all in-
tents and purposes the steady flow in the limit NRe+ © will consist of a
single inviscid core of uniform vorticity with viscous effects being con-
fined to infinitesimally thin boundary layers along the walls.

A cavity with aspect ratio 10.0 was used as a model for a cavity having
infinite depth. As with finite cavities, the primary vortex shrunk at first

as NRe was increased from the creeping flow limit. Beyond NRe= 800 the



vortex grew, with its size becoming proportional to NR;5 at Reynolds numbers
between 1500 and 4000, beyond which point instabilities began to set in. It
was observed that the core of the primary vortex never attained an inviscid
state as NRe + =, Hence, it was concluded that for a cavity having infinite
depth, the viscosity and convection play an equally important role in the
momentum transfer.

O’Brien9 has also tackled the same problem for apsect ratios of 0.5,
1.0 and 2.0, and for the range of Reynolds number from O to 200. She de-~
termined the numerical solution of a linearized form of the Stokes equation,
a fourth order partial differential equation for the two-dimensional stream
function. The result was applied to approximate the Reynolds number solu-
tion and approximations were iterated to a more accurate solution until
the final answer satisfied the complete stream function equation. This pro-
cedure did not require any iteration for NRe = 1, however, it demanded an
increasing number of iterations as Reynolds number was increased. If the
mesh was too large, the iterations did not converge satisfactorily and
oscillated between two close sets of values. O'Brien preferred not to
solve the coupled stream function and vorticity equations so as to avoid
determining the boundary values of vorticity. She explains that in many
cases the failure to get convergence has been traced to these boundary values.

During the course of this study the author came across the doctoral
thesis of Brandtlo. This thesis is written in Hebrew (unknown to this author)
with an abstract in English. Brandt considered an infinite symmetric channel
with fully-developed laminar flow at the entrance as well as éxit and having
recessed walls. He solved the fourth-order partial differential equation for
the two-dimensional stream function. He worked with aspect ratios of 0.25,

0.5, 1.0 and 1.5. He also treated aspect ratios much less than 1.0, with

a view to investigate sudden expansions and contractions in channels.
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Brandt concludes that the flow in a straight channel produces a vortex
flow in any rectangular recess in the channel walls; if the recess is deep
enough, a main vortex is formed. His numerical procedure did not give the
corner eddies for aspect ratios of 0.5, 1.0 and 1.5. The constant stream-
line plots for—aspect ratio of 1.0 show that the dividing streamline is con-
cave for ﬁﬁe = 0 (based on the height of the channel and the average velocity)
and convex for ﬁée = 100.

While these investigations of cavity flow contributed substantially
towards a better understanding of the vortex flow, the phenomenon of flow
separation coupled with the formation of vortex has not been analyzed in
detail. It is well known that problems wherein the vortex motion is generated
by the action of the shear stress of an outer stream, which separates and
reattaches itself again, are of frequent practical occurence. The effect of
the precise nature of the dividing streamline cannot safely be ignored; that
is, the dividing streamline cannot be replaced by a horizontal flat plate
across the top of the cavity in most of the problems. At the same time, sharp
corners in the flow field may be singular points. The present work essentially

deals with numerical investigation of flow separation and the formation of

vortex driven by an external stream.



CHAPTER IT
NUMERICAL FORMULATION

In this chapter the basic equations of hydrodynamics, suitable for
the problem of cavity flow are considered along with appropriate boundary
and initial conditions. Starting with the equations of mass and momentum
balance for a Newtonian fluid, the assumptions necessary for obtaining
useful forms of these equations are introduced. Later, to get the numeri-
cal solution of the present problem, the flow field was subdivided by a
grid in the horizontal and vertical directions and at each nodal point the

governing differential equations were represented by difference equations.

2.1 Governing Differential Equations

The partial differential equations of hydrodynamics for constant vis-

cosity may be expressed as

20 4+ v-(pu) = 0 (2.1)

(continuity or mass balance)

p(g—t + uV)u = pF - Vp + (A+p) 9(v.u) + UVZE (2.2)
(momentum balance)
where,

t = time

p = density

u = velocity

. F = body force per unit mass
P = pressure

¢ and A = the first and second coefficients of viscosity

11
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The two coefficients of viscosity are related by

+ A= K.

win
=

Kk is usually referred to as the coefficient of bulk viscosity. It is
\ .

customaryll to assume that Stokes relation

+ A=0

win
=

is at least approximately valid. Further, this analysis is restricted to
incompressible fluids. These assumptions when applied to equaticns (2.1)

and (2.2), yieid the followirg equations:

Veu = 0 (contimuity) (2.3)

8 . — o= _ = 1 2—

(5%-+ u-V)u = F - E—Vp + v u (momentum) (2.4)
where

v = %—is the kinematic viscosity.

The continuity and momentum equations with appropriate boundary condi-
tions form a complete set of equations for determining the pressure and the
velocity fields. Generally, a pressure equation produced by taking the
divergence of the momentum equation (2.4) is used instead of the continuity

equation. The pressure equation is:

1 2 — — —
’ V p4Ve(u-V)u - V-F = 0. (2.5)

Another formulation of the equations of hydrodynamics may be obtained
by eliminating pressure from the momentum balance equation and at the same

time removing the continuity equation. This can be affected by intro-



duction of the vorticity equation and the stream function concept. Taking

the curl of (2.4) and making use of (2.3) we get the vorticity equation:

s 2
rrle (w*¥)u + (U V)w = VxF + VW w (2.6)

where the vorticity is defined by
E: an (2.7)

It is not convenient to calculate the components of the velocity vector u
from (2.7). In order to circumvent this difficulty, the concept of stream
function is introduced.

Aziz12 has carried out a numerical study of cellular convection using
both of the above approaches to determine the velocity field for a two-
dimensional problem. He concludes that the first approach (momentum and
pressure equations) yields less accurate results than the latter. The
difficulty arises from the highly non-linear nature of the pressure equa-
tion and the coupling due to pressure in the momentum equations. Therefore,
in this study the vorticity equation and the stream function concept are used.

The problem was formulated in Cartesian coordinates, x,y,z, with the
corresponding velocity components u,v, w and vorticity components £,¢,n
(Fig. 2). For two-dimensional flow the vorticity components in this coor-

dinate system are

_ v

£ = 5y

_ _ 3w

L= - o (2.8)
ov su

n=3 _9u

T ax T Ay
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Fig. 2. Coordinate System and Velocity Notation

and the stream function, ¢ , is defined by

(2.9)

Introduction of these definitions of velocities in the expression for n in

(2.8) gives

4+ ly= . (2.10)

(stream function equation)

In addition to equation (2.10), the z-component of the vorticity equation



is used. This equation neglecting body forces is

an (a 3 ) ( 9 3 )

== lv[—+—) - [u=+v =] In ,

d 3x2  3y2 3x dy (2.11a)
(unsteady-state vorticity equation)

For steady state the above equation reduces to

3 ) ) ) _
v( 2+ 2) - (uax+vay) n=20 (2.11b)

(steady-state vorticity equation)

The stream function and vorticity equations with appropriate boundary and
initial conditions form a complete set of equations for determining the

velocity field.

2.2 Boundary and Initial Conditions for the Governing Differential Equations

The steady state problem is solved with the help of equations (2.10)
and (2.11b). Since these equations are elliptic, the boundary conditions
must be specified on all the boundaries. The entrance and exit of the channel
are at an infinite distance from the cavity; therefore, it is assumed that
at these boundaries the normal derivatives of all the functions are zero.
(Alternately, the analytic values of the functions can be defined. However,
past experience indicates that such analytic values may be incompatible with
the numerical solution of the finite difference equations for the interior.)
No slip condition is assumed on the remaining boundaries. Hence, along the
moving wall the velocity of the fluid equals the velocity of the.wall,
whereas, on the other wall the fluid velocity is zero. Mathematically these

conditions can be expressed as follows:

15



Wx, 0) = g

where W is the value of stream function at the moving wall.

2
nx, 0) = 22
Byz
subject to
i‘kl -
= - u
A m

where u is the velocity of the moving wall

p(x, H) =0 t o< x <% %
_ L L
p(x, H+ H) =0 -5 <x <3
(p(i—L—y)=o H<y<H
2’ e
2
n(x, H) = '] +o<x < * %
8y2
2
n(x,H+H)=u —£<X<£
e 2 2 2
oy
2
R
ox2
2 2
n(x L, m) =20, 20
3x2 ay?
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In equations (2.19) to (2.22) the second derivétives are evaluated sub-
Ject to the condition that the first derivatives, that is, the velocities
are zero. (This corresponds to the no slip assumption.)

The numerical procedure was varified by reproducing Burggraf's results
for the prototype problem (Fig. 3), with the boundary conditions (2.23) to

(2.25) given below and again with the no slip assumption.

p(= -Izi, y) =0 (2.23)
v(x, 0) =0 (2.24)
vix, He) =0 (2.25)
2
n{x, 0) = 29 (2.26)
3y2
2
n(x, 1) =24 (2.27)
8y2
2
n(t%‘, y) = L) (2.28)
9x2

The formation of the vortex was studied by solving the stream function
equation (2.10) and the unsteady-state vorticity equation (2.11a) for the
prototype problem. The boundary conditions are the same as equations (2.23)
to (2.28) for all time t. In addition to these, initial conditions are speci-
fied in the interior of the entire field because equation (2.11a) is parabolic

with respect to time.

!
o

p(x, y, 0) = (2.29)

1
o

n(X, Y O) = (2-30)

17
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Fig. 3. Definition of the Prototype Problem

2.3 Nondimensional and Transformed Equations

The equations are made dimensionless using the length of the cavity, L,

and the stream function at the moving wall, wm, as reference dimensions.

x* =X u* = LL-u
L ¥
m
¥ ¥
=X = L
* ¥ LZ
(] =$— n ="rn
m m
¥
6 = By



where the nondimensional quantities are designated by asterisks.

The nondimensional equations are

=t %" |V =n (2.32)
ax 2 ay 2
* 2 32 * . .
A el s > (u v 2 *) n (2.33a)
3t 3x 2 3y 2 3x oy
2 2 * %
8* +3* -\ (u —a——*+v i_*) n* =0 (2.33b)
Re
ax 2 a9y 2 3x 3y
where
v oot
Re v (2.34)
By definition
=
oy
and
H
= - d
v udy
o)
Also, for a Couette flow
= A
u = (1 H)
Hence,
umH
b = (2.35)
2
if
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Note

wm = 2 L for the prototype problem
Therefore,
umH \
1 — —— 1
Npe 2 (2.36) ‘

The nondimensional equations may be transformed from the physical

*

* % ® *
plane (x , ¥y ) to any new plane (z (x ), y ) as follows.

% 2 32 2 ¥ 3 32 * %
dz acz w
( % . * ¥t 2 L n (2.37)
dx 3z 2 ax 2 3z oy 2 .
* ¥ * 2
,9n_ _ dz \2 22 a2z 3 3
NRe % * * *2 x * *
ot ax 3z 2 ax 0z oy 2
* ¥ 9 %
- NR'e (u dz.x. ¥* + Vv a .x) n* (2.38&)
dx 9z oy
and
* *
az \2 32 a%z 3 32
* . * ¥ 1 *
ax 3z 2 ax 2 3z 3y 2
* g * 3 % *
- NR'e (u L*-'—* +v B_x) n =0 (2.38b)
dx 9z oy

The equations were transformed so that the infinite channel in the

A

physical plane can be contracted to a finite length in the transformed plane.

At the same time the transformation was so chosen that the neighborhood of
each of the convex corners was expanded. Thus a uniform grid in the trans-
formed plane is equivalent to a finer grid near the convex corners in the

physical plane. This facilitates the study of the rapid changes in the flow



field near these corners. The transformation chosen is defined by

*
* 1+ tanh a(x + 0.5)
z = 1 + tanh (0.5a) (2.39)

where 'a' is a constant. This transformation maps -« < x* < 0+0 into
00 < z* < 1.0, with a point of inflection at x* = - 0.5 which is the up-
stream corner. |

The function can be extended for the domain 0O < x* < = by assuming

*
that it is antisymmetric about z = 1.0, that is
% *
1-f(x)=+¢f(=x)-12 (2.%0)

The mapping function thus defined (Fig. 4) and its first derivative are

continuous. However, the second derivative has a finite jump discontinuity

with an average value of zero at x* = 0.
2.0 +0
Z*
1.0
- | l l ]
"Ilo -015 O|5 IcO *
X

Fig. 4. The Mapping Function
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Finally, the boundary conditions listed in the previous section are
rewritfen in the nondimensional and transformed forms. ZEquations (2.12)

to (2.22) for the channel flow are considered first.

*
BL*= 0 (2.41)
oz

and at inlet and exit
5 %

0 =0 (2.42)
9Z
%
Wote, %20  x=te
dx
* %
v (z , 0) = 1.0 (2.43)
* % 2 ¥
9
n(z ,0) =% (2.144)
oy 2
subject to
%
3y Yy
e = -
3y y=0 m
* ¥ % %
(z , H) =0 0<z <z (2.45)
cl
* *
zc2 <z £2.0

% *
where zcl and zc2 are the values of the transformed coordinates of the up-

stream and downstream corners, respectively.



*( * H* - *) * *
+ = <
Y (z , e 0 ch <z < zc2
% % * * * *
P (ch’ y)=0 H <y < He
%, % % * * %
v (202, y)=20 H <y < He
% % * 2 ¥ *®
*
n(z,H) = 2 iz 0<z <z,
3y
* %
zc2 <z <2.0
® ® * * 2 ¥ * * *
T](Z,H+H)=-u£— z <z < g
€ 2
oy
¥, % * *\2 2 % * ¥ %
dz 9
n(z_,y)= S Y g o<y«<m
cl ax 3z 2 €
Note ,
2 %
d z *
= =0 x = * 0.5
dx 2
% % * *2 2 * %
dz 3 ¥
n (Zcz’ vy )= ( *) ——%—- H <y <H
ax 3z 2
% % % * 2 2 % 2 %
dz 3 9
n(zcl,H)‘<,\ b2y
dx 3z 2 3y 2
¥, % * *\2 2% 2 ®
: az 9 ]
n (zce, H ) = ( *) i i
dx 3z 2 3y 2

(2.46)

(2.47a)

(2.47p)

(2.18)

(2.49)

(2.50a)

(2.50b)

(2.51)

(2.52)

In a similar manner the boundary conditions for the prototype problem

are nondimensionalized and transformed.

tion (2.39)) was employed. Equations (2.23) to (2.28) became

The same mapping function {(equa-
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* * *
v(zg,v) =0 (2.532)
* * *
v (zc2, y)=0 (2.53b)
* *
p(z,0)=0 (2.5L4)
* ¥ *
v(z ,H ) =0 (2.55)
% % 32 *
n(z,0) =24 (2.56)
oy 2
* * * 32 ¥
n(z, H ) =% (2.57)
oy 2
* * ¥ d ¥ 2 32¢*
- [8z_
n (zcl, y )= (dx*) 2 (2.58a)
* * * Il *®\2 32 ¥
n(z,, ¥ ) —(—Z—*) ¥ (2.56b)
ax J 3z 2

2.5 Method of Solution

Azi212 has reviewed the numerical methods applied to viscous hydro-

dynamics problems similar to the one considered here. According to him
alternating direction implicit methods (A.D.I.) are very effective in solving
non-linear parabolic partial differential equations. He also solved a
three-dimensional natural convection problem with the A.D.I. method. Hence,
in this work the unsteady state vorticity equation is treated similarly.

As mentioned earlier, Mills solved the elliptic equations with Liebmann's

method.

Burggraf and Kawaguti used a slight modification of Liebmann's

technique.

In this work the steady state solution follows the treatment of

Lavan and Fejerl

24

3, which is also a modification of Liebmann's method.



The flow field is divided in rectangular grid in the transformed
plane, Fig. 5, and the finite difference equations are solved for the values

of the dependent variables at the nodal points.

-hZ§y4-

'ﬁ——'lkz*-—*'

i-1 jti

-

Fig. 5. Grid Notation
Consider first the numerical solution of the steady-state vorticity and
stream function equations. 1In the stream function equation the derivatives
are substituted by central differences. In the vorticity equation the second
order derivatives are replaced by central differences; the first order deriva-
tives are approximated by backward or forward differences depending on whether
the coefficients of these derivatives are positive or negative, as explained

by Lavan and Fejer. The finite difference form of equations (2.37) and (2.38b)

are:

#0FL *0 1 =N %1 2 Z*"Az*
>J ’ 2.0 (z Y +c2 i,3+1 )

0+l %1 2 ®! ¥ #1 A * 2

SO (C R = R (22)
ij-1 i+i,J \Ay
*n+l AZ* 2 %2 * *n

+ P % - Az PP B (2.59)
i-1,J \Ay ’ i,d
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*n+l & *n+l &0

n,  =n, .+ B 4 (L.O+¢c. e )n + (L.0+c.c ) 1. .
i,g ig 1 i+1,3 2 i-1,3
* n
2 *
n . o
‘((Az b Tz 1,+1
* n+l
2 ¥
Ay *')
+ Z +c_ ¢ n .
¥ -
((Az 5z 1,3-1
% n
%1\2 *
- (2.0 + 2.0 AX¥ z +c,c +c_c ) n.
A 3 r 6 1,
Z
(2.60)
where
n = the level of iteration
Bw* = overrelaxation parameter
*
Az
[o] = %
Ay
*1
Z = +the first derivative of transformation
®M
Z = +the second derivative of transformation
-~ T
e = Npev AV
xn %2
1 1
c. = (-2 +0N,z° u*)égg;—
A . "Re
Az
%
2
= A ®1
. . + . + + . .
Bn* 1.0/(2.0 + 2.0 (Z§¥ z ) (cl 2.0 ce) c. * (2.0 c) * CS) cz)
cl = -~ 1 and c2 =0 if cr <0
cl = 0 ahd c2 =1 if cr >0
= — = 1 <
ch 1 and c5 0 if cZ 0
ch = 0 and c5 =1 if cZ > 0
c3 = cl + c2
= +
C6 C)_I. C5

These finite difference equations ((2.59) and (2.60)) were solved along

with the appropriate boundary conditions. Initial values were assigned to



all nodal points and improved values of these functions were obtained

by successively scanning over the grid points once with each of the equationms.
The scanning proceeded in the direction of increasing z* and decreasing y*.
This procedure was repeated until the maximum error (residue) in the field
was smaller than some prescribed value.

Now, consider the A.D.I. method for equation (2.38a). The procedure

used is a perturbation of the Crank-Nicholson scheme which is defined as

2

3L _ 12 o 2 otl
—2(Aqf+Aqu) (2.61)

3q2

where the second derivative is defined at time level m and where

fpap T fg — 2 Ty

2

Aq

This scheme requires an implicit method for the solution of finite differencc
equations. The perturbed technique employed here was formulated by DouglasiL
for linear and mildly nonlinear parabolic equatioﬁs. He has shown that for
a cubic region his method is stable for any positive time step. However,

an exact stability analysis for nonlinear equation is lacking.

Before going into details of the numerical method, equation (2.38a) is

rewritten in a different form and some useful quantities are defined.

* 2 % 2 % * é *
R L S e s R b (2.62)
at 9z 2 oy 2 0% oy
where
€1 2
A= (z )
% %1 %M
¢ = - (Née u z -2 )
* 1
D=~ NV



Let

m &
¥ ﬂ*
Agn =_"ig+1 i,9-1
z 2Az
* P
A ¥ _ 1 d41,3 i-1,]
y 2hy
Pt ¥ 5 £
i n PO n . s - .
A2 n'x = i,j+l i,j~1 n 1,J
® %
Z az2
£ £ 8.}
A2 n*m"— 1 i, " ae1,3 2T s
%
%
¥ py 2
£ 2 ¥
§ 4 M = (AN 4, + CA L) n
z z Z
¥ x1
6 ,n =A%, +DA,) n
¥ M y

*m+l
The numerical solution of equation (2.62) can be obtained at %

*
from the known solution at tm by

1 _*m+l Ml Ml ﬁ*m+l —n*m
2 § . (n +n )+ 8, n = Nﬁe —— (2.63)
Z Y At
_*m+l L+1
where n is the first estimate of vorticity at t . The final value
is calculated from
m+1 m mt] m m+1 nm
1 _% * 1 * # * *
'2‘5*(” _+n)+—2—6*(n +n ) =Neo n -1
z y At

(2.64)

Rearranging equation (2.63),
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2.0 N/ m+], . 2.0 N! m
. Re | =¥ "= Re ¥
§ oy — % — = -8, +2.08 p + ——p—>n

z At 2 y At

Substracting equation (2.63) from equation (2.6L4) and rearranging

2.0 Nﬁe o+l %I 2.0 Nﬁe _gm¥l
Sy~ = (" =8 n -—x —
y At v At
Equations (2.65) and (2.66) reduce to
+ . ! +
A, ¢C _xtl .| 208 2.0 N | _»mtl
% rl - T %2 ~ ¥ 3,3
Az 2 2.0 Az i,j+1 Az At >
_*m+l
LA e 5 i
Az 2 2.0Az >J
A c #I
=[~ - Y n
Az 2.0Az i,j+1
*m
+ |- + & noLo.
¥, * i,j-1
Az 2.00z
.[_20 D *
by 2 ay BEAERE
L _o20 . S
Ay*2 Ay* i-1,J
2.0 N!
2.0 A k.0 NRe ®
* x, T ® ~ * noy
Az 2 Ay 2 At >J

(2.65)

(2.66)

(2.67)
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1 D *
* - LI L
Ay 2 2.0ay >
'
. 2.0 n*m 2.0 NRe ﬁ*m+l
- % . s T TR A
Ay 2 1,J At 1i,J (2.68)

Each of the above two equations involves the solution of a tridiagonal sys-
tem of linear algebraic eguations.

The time dependent vorticity equations ((2.67) and (2.68)) and the
stream function equation (2.59) along with the appropriate boundary condi-
tions were solved to determine the transient solution for the prototype
problem. At all nodal points initial values were assigned. These values
were either for t* = 0 or for t*m. In the former case they would be zero
and in the latter case they would be the previously calculated values. The
vorticity was first calculated on the boundaries and then in the interior
by the A.D.I. method. The stream function equation was completely relaxed
using the values of vorticity at the new time. This procedure was repeated
for a desired number of time levels.

The vorticity at the boundaries and the coefficient of the first order

terms in the vorticity equation always lagged one time step behind the rest



of the field. However, all the values in the field might be iterated at
the same time step until the boundary values of vorticity did not change
more than a prescribed limit. This would make the computer time and cost
prohibitive; as a result, this refinement in the solution was not considered.
As mentioned before, vorticity at the solid boundaries was calculated
from the second derivative of stream function. The stream function was ex-
panded about the boundary under consideration in a Taylor series, and the
appropriate value of the velocity was substituted for the first derivatives.
The resulting expression was solved for the second derivative to get its
finite difference form. However, for the channel flow at the entrance and
the exit the normal derivatives of vorticity as well as stream function
were assumed to be zero. These conditions are enforced by treating thé
boundary points as interior points and reflecting the values of the function
at the interior points (the ones next to the boundary) to the points outside

the boundary.
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CHAPTER I1I )
RESULTS AND DISCUSSION
It is generally desirablé to check the validity of a-nﬁmerical pro-
cédure by comparison with some known results. Therefore, first the proto-
type problem was solved for creeping flow in a square cavity. The results
are presented as contours of constant stream function (i.e. as streamlines)
along with Burggraf's solution for the same case (Fig. 6). (In the present
work the contours of constant streamlines were obtained by graphical inter-
polation whereas Burggraf employed numerical interpolation.) Good agreement
is indicated in Fig. 6 in the entire flow field with the exception of the
region near the center of the vortex, where the maximum values of the stream
function in the two cases differ by 4.3 per cent. This variation is probably
due to the coarser grid (11 x 13 points) and the use of one-sided differences
for first derivatives as compared with Burggraf's finer grid (50 x 50) and
central differences. (The one-sided differences were chosen because the
stability analysis by Lavan and Fejer shows the central differences to be
unstable for numerical solutions of channel flow.)
After partially confirming the validity of the numerical procedure, it
was utilized in the main investigation of the flow in a cavity along the wall

* 3
of a channel. The grid size was 0.1 and 0.0625 in y and z -direction, respec-

tively. The stream function and vorticity values were relaxed until the

32

residues were smaller than 1.5 x lO—6 and 2.5 x 1o"h, respectively. The
height of the channel and the length of the cavity were always kept the same
but the height of the cavity was varied to obtain the aspect ratios of 0.5
1.0 and 2.0.

It should be noted that in the prototype problem the boundary layer

thickness along the walls of the cavity becomes thinner as Reynolds number is



e

A BURGGRAF (REF. 3)

y* =-0.191l FOR PRESENT WORK

¥ =-0.2 FOR BURGGRAF'S WORK

FIGURE 6. COMPARISON WITH BURGGRAF. Ng, = 0, ASPECT RATIO=1.0.
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increased. and the proper representation of the flow field would require finer
and finer mesh sizes. In this problem Reynolds number is directly proportional
to the velocity of the moving wall, while in the present problem it is pro-
portional to the velocity of upper channel wall. Hence a large Reynolds
number (say 1000) in the present pfoblem corresponds to a much smaller Reynolds
number based on the average velocity in the free shear layer on top of the
cavity. It is therefore believed that the results obtained using 99 grid
points inside the cavity are accurate for the entire range of Reynolds numbers
investigated (1 - 500).

Constant streamline plots are shown in Figs. T to 10 and in Figs. 11 and
12 for the aspect ratios of 1.0 and 0.5, respectively. Only one vortex is
observed in these cases. An increase in the Reynolds rumber affects the
vortex flow as follows: (1) the strength of the vortex first increases and
then decreases; (2) the vortex center shifts downstream and in an upward direc-
tion; (3) the streamlines in the free shear layer cluster together; and (L) the
streamline dividing the cavity flow and the channel flow is concave at low
Reynolds numbers and convex at high Reynolds numbers.

Two vortices, one stronger than the other, are observed (Figs. 13 and 14)

for a deep cavity having an aspect ratio of 2.0. The primary vortex extends to

a depth of T75.0 per cent and 70.9 per cent of the cavity height for Née = 1.0
and Née = 100.0, respectively. This vortex has a height to legnth ratio of
1.464, for Née = 1.0 and 1.460 for Nﬁe = 100.0. The numerical creeping flow

solution of Pan and Acrivos, for the prototype problem with the same aspect
ratio predicts this ratio to be 1.L.

The effect of the presence of the cavity on the external stream (the
channel flow) is shown in Fig. 15. The variation of velocity u* with respect

%
to z , at one grid point away from the wall having the cavity is given. At
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high Reynolds number the velocity in the neighborhood of the cavity deviates
less from the corresponding value of the Couette flow at the entrance and
the exit.of the channel. The sudden removal of the presence of the channel
wall results in a smaller acceleration of the particles next to the wall at
high Reynolds numbers.

In the numerical procedure followed here, the upstream and downstream
corner points (that may be singular) were considered to be grid points.
The behavior of the solution at these points was therefore studied. Figs. 16
and 17 show the effect of changing Ay* and Az* on the values of the vorticity
at the corners. These values increase as Ay* decreases (Az* being held
constant). However, at one grid point upstream of the upstream corner and ﬁ
one grid point downstream of the downstream corner, values of vorticity were
practically unchanged. (Note, for Ay* = 0.05, the stream function and
vorticity were relaxed one order of magnitdue lower than those for the other
values of Ay*.) When AZ* was decreased, keeping Ay* constant, the vorticity
values at the corners were practically constant. Thus, it seems that these
points do not appreciably influence the flow field at a small but finite
distance away.

The development of the vortex in time was studied using the configuration
of the prototype problem for Nﬁe = 10.0. It was decided not to solve for
the transient solution inside the cavity in a channel wall in order to con-
centrate only on the formation of the vortex and keep the computer cost low.
The upper horizontal plate was moved with a constant velocity at t* > 0. The
nature of the vortex is shown in Figs. 18 to 23 for different t*. The
strength of the vortex increases uniformly and attains the steady-state value

asymptotically (Fig. 2U). This value is in better agreement with the value

obtained by Burggraf than that calculated from steady-state equations. This
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is mainly due to the fact that the unsteady-state finite difference formula-
tion uses central differences whereas the steady-state formulation employs
one~sided differences for first derivatives in the vorticity equation.
Finally, other investigators have reported corner eddies for square
cavities. The present study that utilizes a relatively coarse grid does not

indicate any corner eddies.




CHAPTER IV
CONCLUSIONS

1l. Steady laminar incompressible flow in two-~dimensional channels
with a rectangular cut-out were obtained using an explicit numerical method
for solving the complete Navier-Stokes equations. Solutions were obtained
for aspect ratios of 0.5, 1.0 and 2.0, and for Reynolds numbers of 1, 10,
100, and 500.

2. The number of eddies present in the cavity depend only on the aspect
ratio. For aspect ratios of 0.5 and 1.0, one vortex was observed. However,
for aspect ratio of 2.0 two vortices were present, one on top of the other.
The dividing streamline was at a cavity depth of 0.75 at Reynolds number
unity and .709 at Nﬁe = 100.

3. The streamline dividing the external flow and the cavity flow was
concave for low Reynolds numbers and convex for high Reynolds numbers.

4. As the Reynolds number was increased, the strength of the vortex
increased and then decreased, and the vortex center moved downstream and up-
ward, creating a thin shear layer.

5. The calculated vorticity values at the upstream and downstream
corners did not appear to approach a limit as the grid size was decreased.
However, the vorticity values at nodal points next to these corners, leveled
off as the number of grid points was increased.

6. 1In the present problem the shear layer on top of the cavity and along
the cavity wall is not very thin even at large Reynolds number (based on
channel flow) hence, results obtained with relatively coarse grid may be accur-
ate even at large Reynolds numbers.

7. In order to observe the actual vortex formation the time-dependent

solution for the prototype problem was determined using an implicit alter-
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nating direction method to solve the vorticity equation and an explicit re-
laxation procedure for the solution of the étream function equation. The
strength of the vortex increased uniformly and attained the steady state
value asymptotically.

8. The steady-state results determined from the unsteady-state equa-
tions were in better agreement with Burggraf's results (for the prototype
problem) than those calculated from steady-state equations. This may be
due mainly to the fact that in the former study central differences were i
used for first derivatives whereas one-sided differences were used in the

latter study.
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APPENDIX
THE FORTRAN PROGRAM
In this appendix the computer program used in this work is briefly
described. The program was written in Fortran IV for the IBM 360 Computer.

The notations used in the program are listed and defined below.

Fortran Symbol Explanation
- - *
Ic Last grid point in the y -direction of
the channel
*
1L Last grid point in the y -direction
(channel plus cavity)
*
JL Last grid point in x -direction
*
NMAX Maximum number of iterations for ¢ and
steady-state n* equations
KLl Frequency of print-out of maximum residues
K12 Output option: 1 - no CHRT output
. % * * %
KL3 Outpug option: 5 -read ¢ , n , u , v,

and t from magnetic tape, 6 - write ¢ ,
n*, u', v. and t° on magnetic tape, 7 - do
both of above

KLL Problem option: 1 - prototype problem,
2 - channel with cavity
% %
KL5 Output option: 1 - no ¢ and n CHRT
output
KL.6 Plane option: 1 - no transformation, 3 -
transformed plane
K19 Frequency of unsteady-state CHRT output
KL10 State option: 1 - unsteady state
KL13 Initial value option: 1 - initial values
printed
KL1L u, v, x and y printed (dimensional output)
KL16 Nature of boundapy condition at J = JL:

1 - functions ¢ and n* defined, other-~
wise normal derivatives equal to zero
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K118

RNN

BPSI

BVRT
DPSIM

DVRTM

Je

IM

J3
LENGTH
DLTT
NTMAX

NMAX1

ZMIN

KLO, KL7, KL15, KL19, KL20,
KL21, HL, ZMAX, AA

U
W
PST
VRT

DIST

DLTZ

DLTY

Must be equal to 1
* *
Ax /Ay

Reynolds number, Nﬁe

Over-relaxation factor for stream function

equation
Must be equal to 1
*

Maximum allowable residue of ¢

%
Maximum allowable residue of n (for

steady-state)
Value of J at which the cavity starts

Value of J about which the cavity is
symmetric

Value of J at which the cavity ends

Dimensional length of the cavity
*
At

Number of time steps

Maximum number of iterations for ¢
(unsteady state)

Must be 0.5

Dummy variables - not used in the program

®
The velocity in y -direction

*
The velocity in x -direction

» i

ki

;s




Note, during the utilization of the computer program given here, the
comments Jlisted in the main program and the ones listed below should be
kept in mind.

1. Height of the channel and the length of the cavity should be
the same.

2. Do not use transformations given by the options KL6 = 2 and
KL6 = L.

3. The prototype problem can be solved only for aspect ratio of 1.0.

4. The present form of the program is not capable of solving for the

transient solution of the flow in the channel having a cavity.
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// EXEC FORTRAN
C

C CR (OR C2) POS.-BACK.CER. CR (OR CZINEG.—- FORW, DER) 1PF00020
c
COMMON TCMN, TC,ICPL s TLMN,y TLo TUPL y JLMNyJLyJLPL,KLOsKLY oKL34KL44KLS,
IKL7 4 KL1I3,KL149KL15,KL164KL19,KL?0y Cy BPST4BVRT,DPSIM,
2RNN¢DTZ24DT2Y4Z(£0) 4B,CWC,SVRCF,YTRN(40),Y(40),YSQ(40),
BYTI(40)¥YTSQ40)4YT2(40),2ZT1(60)47ZTSQUE0)ZT2(60),
4DIST(EC) ¢y PST(L0460) 4 VRT(40,60),U(40460)94W{40,60)4LN,
SPSTIMAXy ITTV4JTV,DPSTILD,DVRTLOyDLTY,NLTZ,JLR,,ITS4JTS,
SJLBPLy J2 s JNMNy UMy INPL I3 4P (40,6029 FL,LENGTH,LNUN4NT,
TAL(6C)»A2(40),A3(6C)+A4(40)4DLTT KLIO0,NMAXL ,WMAX,TIME
REAL LENGTH
1 READI(1 4200) IC,TL,JLyNMAX  KLOyKLY,KL2,KL3,KL4 4 KLS5yKLT9KLIsKL 10,
IKL13,KL14,KL15,KL1E4KL19,KL20+C4RNN,BPST,
2BVRT ¢DPSIM,BVRTNM 3 J2 9N J3 s TIME,LENCTHy DLTT ¢ NTMAX o NMAX]
200 FORMAT(1615,4/21544F1C.54/+42E104249215,3F10.5,215)

IF KLsa=1, KLO=JL+20

IF KL4=?7, KLC=JL

IF KL4=1,GIVE J2,JV AND J3. UM=KLO/2+1. J3=-J2=JL-2. JIM-J2=J2-g¥
KL4 SHOULD RE EITHER 1 OR 2

C=(IC-1)/(KLO/2-1)

KLl - FREQUENCY OF PRINT~-QUT OF MAXIMUM RESIDUE FOR STFADY STATE
IF KL2=1, NO CHRT CLTPUT

IF KL3=1, PUNCHEN QUTPUT

IF KL4=1, CCNSTANT (ROSS-SECTION AND IC=TL

IF KL4=1, KL6=1 AND KL16=1

IF KL4=2 CAVITY PRCHLEM

IF KL4.NE.1, DLTYY ANC HENCE C DEFINEC ON Y(IC)

IF KL5=1, NO STREAM FUNCTION AND VCRTICITY OUTPUT

IF KL6 GT 1 CALCULATICONS WITH TRANSFORMATION

IF KL6=2, TRUNCATEC ARCTANGENT TRANSFCRVMATICON -
X=(ARCTAN(AXZ)-ARCTAN(AXZIMIN))/(PA1/2.C-ARC{A*ZMIN})

IF KL6=2y GIVE IMIN ANC X

OO0
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OO0

IF KL&6=4, ARCTANGENT TRANSFORMATICA=X=0.5%{1.04+2.0/PATXARCTAN{AXZ))
IN Z-DIRECTION

IF KL10=1, UNSTEADY STATE

IF KL13.EQ.l, INITIAL VALUES OF PSI,VRT,UsW AND V ARE PRINTED

TF KL14=1y U,V AND W IN CIMENSIONAL FORM

IF AAJNEL.O.O0, Z(JL)=1.0 AND KL6.GT.1 —-THE LAST POINT 1IN

Z-DIRECTION CONSIDERED AT INFINITY

IF KL16=1, THEN FUNCTIONS CEFINED AT AT J=JL

IF KL16.NE.1, NORMAL DERTVATIVE OF VCRTICITY AND STREAM FUNCTION ZERD
AT J=JL. USE IT FOR KL4=2 ONLY

IF KL18=1, NC TRANSFORMATICN IN Y-CIRECTION

J=J42 CAVITY STARTS

J=J3 CAVITY ENCS

IF KL4=2, GIVE J2 AND 43

WRITE(34205)1Cy TLy JLyNMAX KLOWKL 14 KL2oKL2yKLASKLS9KLT4KL9,KL1O0,
IKL134KL14,KL15,KL]16,KL19,KL20,CoRNN,RPST,
2BVRTDPSTMyDVRTM J2 4 M9 33, TIME,LENGTH,DLTT4NTMAX ,NMAX]

205 FCRMAT(1HY .//+43X,7F+1IC =13,3XTHIL =13, 3XTHJL =134 3XTHNMAX
1 =12,3XTHKLO =13 ,3XTHKL1 =13 ,3XTHKL2 =13 43XTHKL3 =13,3XTHK
2L4 =13, 3XTHKLS =134// + IXTHKLTY =T13,3XTHKLY =13,
3 3XTHKLIO =I3,3X7THKL13 =13,3XT7THKL14 =13,3XTHKL15 =13,
4 3XTHKL1E =13,3XTHKLIS =T13,3XTHKL20 =13//,3X,THC =
S1PE12.54//+3XTHRNN =1PE12543X7THBPST =1PE12.%5,3X,
6THBVYRT =1PE12.5,4//,3XTHDPSIM =1PF12.5,3X
1 THOVRTM =1PE12.5,3XTHI? =13,3XTHIM =13,
83XTHJ3 =13 ,3XTHHL =E12.5+3XTHFLENGTH=E12.5//3XTHDLTT =€12.5
G3XTHNTMAX =T13,3XTHNYAX1 =13)
JMMN=JM=-1
JMPL=JN4Y
JLMN=JL-1
JLPL=JL+1 1PF00820
TLMN=TL-1 1PF00830
ILPL=TL+1 1PF00840
TCMN=1C=-1
ICPL=IC+]
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JLB=JL
JLePL=JLPL
DC 5 J=1,JLPL
DO 5 I=1,1LPL
PSI(I,J)=0.0
VRT(1,J)=00
u(1,J1=0.0
5 Wil,J1=0.0
DPSILD=0.0
DVRTLD=0.0
NT=0
LNUN=0
LN=0
CALL SETUP 1PF00230
IF KL3=5 REAC PS1, VRT,U, W AND TIME ON UNIT 08
IF KL3=6 WRITE PS1, VRT,Uy W AND TIME CN UNIT 10
IF KL3=7 DC BCTH OF ABNVE
IF (KL3-5) 301, 202, 301
301 IF (XL3-7) 303, 302, 3C3
302 REWIND 8

[aNeXel

READ (8} t( PSI(I,4),I=1,IL), J=1,JL),
1 (( VRT(I,4),1=1,1IL), J=1,JL) ,
2 (¢ W{TaJ2aI=1,1I02, J=1eJL),
3 (( UCT4d) 51 =1,T1), J=1,JL) .TIME
REWIND 8
303 CONTINUE
IF ((KL13)=-{1)) 6,21001,6 YICASADD
31001 CALL CHRT
6 CONTINUE

IF (KL10-1) 7415,7

STEADY STATE CALCULATICNS

[eXaNe)

7 DC 10 N=1,NMAX

LN=N 1PFO0500
CALL STRFCT 1PFO0510




€9

31002

8
210

9

1000

10
11
12
13
14

OO0

220

17
18

225

IF ((ABS(DPSILD))-(1.510)) 21002,31002,14

CALL BCUND

CALL VORTCT

TF(LN=-{LN/KL1)*KL1) G5,8,9

WRITE(3,210) LNsITS+JTS,DPSILD,ITV.JTV,DVRTLD

FORMAT{1HO 43Xy 2HLN=14,5X s THDPSILD(12,1H,12,42H)=1PE12.5,5X,
THDVRTLD(12,1H,1242H)=1PE1245)

IF {(DPSIM-ABS(CPSILTY) 10,10,1000

IF (DVRTM-ABS({CVRTLD)) 10,10,11

CCNTINUE

TECLN=(LN/KL1)#KL1) 12,13,12

WRITE(3,210) LN, ITS4JTS+DPSILD,TITV4JTV,DVRTLD

TF ((KL2)={1)) 14,1,14

CALL CHRTY

GC 7C 1

UNSTEADY STATE CALCULATIONS

NTIN=1

NTFL=NTMAX

IF (KL3=5) 30,26,25

IF (KL3=7) 3C92643C

NT IN=2

NTFL=NTMAX+1

DO 20 NT=NTIN,NTFL
TIME=TINE4DLTT

CALL BCUND

CALL ACT

CALL STRFCT

WRITE(3,220) LNUN,ITS,JTS,DPSTLD
FORMAT (//3X, THLNUN =13, 3XTHDPSTLD (12, 1H,12,2H)}=1PE12.5)
IF (LNUN-NMAX1) 17,17,21

TF (NT=(NT/KLS)*KLS) 20,18,20
CALL CHRT

WRITE(3,225) TIVE

FORMAT (//3XTHTIME =1PF12.5)

YJICASA>>
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20 CONTINUE
GC 7C 1
21 CALL CHRTY
GO 10 1
END 1PF Q0730
// EXEC FORTRAN
SUBROUTINE SETUP
CCMMON ICMN JCoICPLsTUMNyILy TLPLyJIMNyJLsJLPLoKLOSKLY 4KL3,KL 44KLS,
IKL T KLL124KL146,KL15,KL164KL19,KL20,C4BPSTBVRT,DPSIM,
2RNN DT 22+DT2Y42160) 4By CWCySVRCF,YTRN(40),Y(40),YSQ(40),
AYTYI(40) +YTSQ{40) 4YT2{40),2T1(60),27SQ(60),2T72(60),
4DIST(60)4PSI(AC,60)¢VRT140+60),U(&C,60),W{460,60),LN,
SPSIMAX ¢ ITV4JTV,,DPSILD,CVRTLDGOLTY»CLTZHILB,ITSHJTS,
GJLRPL y J2 9 JMMN g UMy JUNMFL 3 J3 4P {40,600 oL LENGTH, LNUN,NT,
TAY(60) 4A2(40 )4 A3(60)4A4(40)4DLTT4KLICyNMAX]Y y WMAX,TIME
REAL LENGTH
DLTY=1./ FLCAT{ICWVN)
DLTZ=0LTY=*C
DT22=DLTZI*DLTY?Z
NO 5 J=1,KLO0
5 Z(J)=0DLTZ%FLCAT(J-2)
B=1,/C%%? 1PFO087T0
DT2Y=0DLTY*DLTY
CWC=2.0/DT2Y
DO 10 I=1,1L
10 YTRN{T)=DLTYX(FLCAT(1)=~-1.0?
READ(1,4200) ZIMAX,KLE4KL18,KL20,KL21,AA,ZMIN
200 FORMAT(F10.5+415,2F10.5)
WRITE(24205)7ZNMAX KLE,KLIBKL?20,KL21,AA,IMIN

205 FORMAT({/3XTHIMAX =1PE12.53XTHKL6 =13,3XTHKL18 =13,3XTHKL20 =
113,3X THKL21 =13, 3XTHAA =F12.5y 3XTHIMIN =F12.5)

IF ((KL16)-(1)) 31005421006+31005 YICASAD>
3100€ JLRPL=JLMN YICASADD
31005 TF ((KL16)-(1)) 31007,21008,31007 3ICASA>>
31008 JLB=JLWMN JICASAD>D

31007 CONTINUE 1ICASADDS
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e NeYe)

222

225

10

49

50
71
80
c
C
C
31009

11

12
14

WMAX AND LENGTH SHCULD BE CIMENSTONAL

READ(1,222) WMAX
FORMAT (F10.5)

WRITE(32,225) WMAX
FORMAT (/, 3XTHFWMAX  =1PF12.5)
PSIMAX=KNAX*LENGTHAYTRN(IC)I/2.0
DO 70 J=2,JLB
W(leJ)=WVMAXXLENGTH/PS TMAX

IF (KL10-1) 49,80,49

IF (KL4-2) 80,5C,8C

DC 71 J=2,JL

PSI(1,J)=1.0

CONT INUE

TRANSFCRMATICNS USED IN RACIAL ANC AXTAL DIRECTIONS

PAT=3.14156G2654

IF {(AA)-(0.0)) 9,21009,9

GO TO (9+6+7+9), KLE
TANINV==Z{JVM)%XPAI/ (2.0=2.,0%Z(JM}}
AA=( SIN(TANINV)/COS(TANINV)) /ZMIN
GC TC 9

AA=ALCGI(1.0+(1.0-2(32)1/2(J2)1/(1.0-11.0-20J2))/72(J2)1))/2.0/0.5

CONT INUF

DC 15 I=1,1IL

GO 79 (11,12), KLlE
Y{T)=YTRN(I)
YTl{1)=1.0
YT2(11=0.0

GO TO 14

CONTINUE

CONT INUE
YTSQ{I)=YTLI(I)*YT1I(D)
YSQEI)=Y(1)%Y(1)

YICASADD
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15

16

17

170
31011
3101¢C

19
20

18

30

CONTINUE

DO 20 J=1,JL

GC 7O (16,17,18,170),KLA

DISTIIY=T()

IT1{Jd}=1.0

IT2{(J)=0.0

0 TO 1@
ARG=Z{J)%*PAT/2.0+TANINV*{1.0~-2{J))
DIST{JI)={SIN(ARG)/CCS{ARG) I/ AA
ITI(JY=AA/((PAY/2.C=TANINV)I*{ 1,0+ AAXDTIST(J) ) %x%2))
T2 (J)==AAXSIN(Z7(J)APAT+2 O0XTANINV*{10~-2(J)))
GO 1O 16

IF ((J)=-(1)) 31011,20C,21011

ITF ((J¥=-(JL)) 31010,20,31010
ARG=PAT*{Z{J)=C.5)
NIST(J)=(SIN(ARG)Y/CCS(ARG))/AA

ITIC) =AA/ (PATX (1. 0+ (AAXDIST (J} ) %%2})
I2T2(J)==2. 0% AAXPATADIST(J)I*Z2TSQ(J)
ITSQUII=7TLI(J)=ZT1 ()

CONTINUE

RETURN

TANHA=1 LO+TANK(Q«53AA)

NO 30 J=3,JM

ARG=Z(J)*TANFA-1.0
DIST{II=ALCG((1.0+ARG)/{1.0-ARG))/2.0/AA-0.5
TANHZ=TANH{AAX(DIST(J}+0.5))
ITL(J)=AA%{1aC=-TANL2%%2) /TANHA
IT2C(JY=—2 . 0%AARZTI(JYAXTANHZ
ITSQUII=ZTL{(J}Y*ZT1(J)

JD=KLO+1-J+1

DIST(JC)Y=-DIST(Y)

ITI(JD)Y= Z71(J)

LT2(J4D)==ZT2(J)

ZTSQ{JN)I=727SQLJ}

IT1(2)=0.0

I72(2)=0.0

1)CASA>S
YICASAD>
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92

94
93

/7 EX

20

27SQ(21¥=0.0

IT2(JM}=0,0

ITI{KLO)=0.0

IT2{KLO)=0.0

ITSQ(KLO)=0.0

NIST{?2)=0.0

DIST{KLC)=0.0

IF (KL4-2) 92,93,92

J=1

DO 94 JJ=J2,4J3

J=J+1

DIST(J)I=NIST{JJ?

ITI(I) =271 (00)

2TSQUII=2TSQ (I

1T203)=272(4J)

RETURN

END
EC FORTRAN

SUBRCUTINE STRFECT

CCMMON ICMNZTC,ICPLaILMN, TLy TLPLYJIMNyJLyJULPL KLO KLY yKL3,KL4,KL5,
IKLToKLYI2yKLYIG,KL15,KL1A,KL19,KL20,C4BPSI3VRT,DPSIM,
2RNN DT 72,0T2Y42{60) 4By CWC+SVRCF,YTEN(40),Y(40),YSQL40}),
3YTI(40) 3 YTSQU4AC) 4 YT2(40) 4Z2T1(60),42TSQ(60),2T72(60),
4DTIST(60)PST{40,60),VRT(40,60),U(4Cy80)4W(4C+60)4LNy
SPSIMAX I TVeJTV,DPSILD,DVRTLD,NLTY,LCLTZ,JLB,ITS,J4TS,
AGJLBPLy J29 JMMN,y UMy UJMPL,J3,P(40,60) 4 FL,LENGTH,LNUN4NT,
TAL(60) 4 A2{40)423(60)4A4(40)yDLTT4KL1IONMAX 1 WMAX,TIME
REAL LENGTH

LNUN=0

LCNUN=LRNUN+Y

DPSILD=0.

11=2

MN=KL&

IFL=ICMN

J1=2

IF (KL4=-2) 10,11,10



89

10
11

12

990

21

22

993

994
23
21014
31013

24
15

16
35

JI=3

JFL=JLB

IF (KL10=1) 990,12,990

JI=3

JFL=JLMN

D0 22 J=JT.JFL

D0 22 I=II,I1FtL
NPSI=(0.5/7(ZTSC{JI+YTSQIT)/B JIE(PST(T,J+1}%(2TSQ(J)+0,.5%
1Z2T2(J)*DLTZI+PSTI{ T+ J=10%(ZTSQ(II=0S*¥ZT2{JIXDLTZ)I+PST(I+1, ) %
20YTSG(I) +YT2(1)*DLTY®0.5)Y*C*C+
3PST(I~-1,J)*(YTSQ(T) =YT2( 1) ADLTY®*0. 5)*C*C—
4DT22%VRT(1,0)) =-PSI(I,I
PSI{I,J)=PSI(1,J)+BPSTXNPSI
IF(ABS(CPSILD)-ABS(CPSI)) 21921,22
DPSILD=DPSI

ITS=1

J7S=J

CONTINUE

11=1C

IFL=TUMN

GO TC (©24,993),MN

Ji=J2+1

JFL=J3-1

MN=1

GO 70 690

If (KL10-1) 23,15,22

IF ((KL&Y-(2)) 35,31014,35

[FL=TCMN

DO 24 I=2,1FL

PSI(I,41)=PSI(T1,3)
PST(I,JL+1)=PST(TI,JL=1)

RETURN

IF (ABS(DPSILD!~DPSIM) 35,435,164

TF (LNUN-NMAX1) 20,:20,25

RETURN

END

YICASAD>D

R P S
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69

/7 EXEC FORTRAN

60
61

G397
31018

31017
Q98

27

SUBROUTINE BOUND

COMMON TCMN,IC, JCPL 3 TUMN, TL, TLPLy JIMN,JL,JLPL,KLO,KLY ,KL3,KL&,KLS,
IKLT74KL1I39sKL144KL1I5,KLY16,KL19,KL20,C+BPST4BVRT,DPSIM,
2RNN DT Z224DT2Y2(60)4ByCWC,SVRCF,YTRN{40),Y(40),YSQ(40),
3YTI(40) . YTSQ(40) ,YT2{40),2T2(60),27SQ(60),4ZT2(601},
4DIST(60)4PSTI(4C,60) 4 VRT(40,60) 4U(LC,6C) 4W(40,60)4LN,
SPSIMAX s ITV o JTVsDPSILD e DVRTLDyDLTYCLTZ yJLBLITSJTSy
EJLBPL, J2 s JMMNy UM UNFL U3 4P (40,60) 4L LENGTH,LNUNGNT,
TAL{60) 4 A2(40),A3(60)Y,44(40),DLTT KLIO,NMAXL,WVAX,TIME

REAL LENGTH

DIMENSION A{60),BNI60) ,CN(60),D(60},X{60)

VRT(IC 42 )==CHCH(PSI(IC,2) ~PST{ICMN,2) IXYTSQUIC)
VRT(1,2)=CHCR(PST(242)=PST{1,2)+DL TYXWMAXXLENGTH/(PSTIMAXAXYTI(1)) )%
1IYTSQC1)=YT2( 1) *WMAXHLENGTH/{PSIMAXAYTI (1))

DVRTLO=0«

Iva=1C

JI1=2

IF (KL10~-1) 61,60,¢€1

JI=12

Do 28 J=J1,JL8

GO TC (S98,997),KL4

I1VBe=1C

IF ({(J)-(J2)) G668,21018,31C18 11CASA>>
IF {((J)=-{J3)) 21017,31017,998 PICASAD>
IVvR=1L )Y CASAD>
VRTIT=~CWCx{(PST(IVRJ)=PSI(IVB=1,J)0%YTSQ(TIVB)

NVRT=VRTT~-VRT(IVB,J)

VRT(IVB,4J)=VRTT

TF{ABS{CVRTLD)-ABS{CVRT)} 2T¢27,28

DVRTLD=DVRT

JTv=J

ITV=1VvR

28 CCNTINUE

D0 50 J=J1,JLB
VRTT=CWCH(PST(2,J)=PST(1,J)4DLTY*WMAXXLENGTH/{PSIMAX®RYTLI(1)) )%



oL

1YTSQILI=YT2( 1) AWMAXKLENGTH/ (PSIMAXAYTLI(1)) !
DVRT=VRTT=VRT(1,J) )
VRT{1,J)=VRTT
IF (ABS(CVRTLD)-ABS(CVRT)) 53,53,°C
53 DVRTLD=DVRT
Jrv=J
1TV=1
SC CONTINUE
IF (KL4-2) 93,21021,S53
31021 JC=J2 J1ICASADD>
DN 40 T=1C,TILMN
40 VRT(1,JC)==2.,0%ITSQJC)I*(PSI{I,JC}-PST(T,4C+1))/DTZ2
VRT(IC 4 JC)=VRT{ICJC) ~CWCH(PST{ICyJCI=PSI{ICMN,JC)I*YTSQ(IC)
JC=43
DL 45 I=IC,ILMN
45 VRT(I4JC)==2,0%ZTSC{JCI*(PSI(T,JCI=-PSI(I,JC-1}1/DNTZ2
VRT(IC+JCY=VRT(IC,JCI-CHC*(PST(IC,JC)=PST(ICMN,JC))*YTSQUIC)
GC TC 10
S2 DO 65 I=2,1CMN
VRT(1,2) ==2.0%27SQ(2) *(PSI{1,2) -PSI{1,3))/DTZ2
95 VRT{I,JL)==240%2T7SC{JLI®(PSTI(T,JL)=-PSI(I,JL=1))/DTZ2
RETURN
10 RETURN
END
// EXEC FORTRAN
SUBRQUTINE VORTCT
COMMON TCMN2ICoICPLoTUMN, ILy TLPL s JLMNyJLyJLPLIKLO, KLY yKL3yKL4,KL S,
IKL74KL123,KL14,KL15,KL16,KL19,KL20,C4RPST,BVRT,DPSIM,
2NN, DT 22,DT2Y4Z{60)4B,CHC,SVRCF,YTEN{40),Y(40),YSQ(40),
3YTI(40) ,YTSQ{40)4¥YT2(40),7T1(50) ,2TSQ(60),272(601,
401ST(60),PST(40,60),VRT(40,60),U(4C,60),W(40,607,LN,
SPSIMAX y T TV, JTV,DPSTLDsCVRTLDNLTY,CLTZ4JLB, ITS,JTS,
6JLBPLy J24 JMMN, UM, UVPL,J3,P (40,600 yFL,LENGTH, LNUNyNT,
TAL(60) yA2140),A3(60)4A4(40),DLTT,KLI0,NMAX 1, WMAX, TIME
REAL LENGTH

MN=KL4

v a0 VP T T B e e e L b



I

10
11
990

57

58

593

994
75

I1=2

IPL=TICPL

IFL=TCMN

J1=2

IF (KL4-2) 10,11,10

J1=3

JFL=JLB

BC 58 J=J1,4FL

D2 58 IR=I1,IFL

I=IPL~-1IR

BB=B*ZTSQ(JI/YTSQII)

A=2.+2.%BR

CR=(=YT2(T)+RNN*ZTI(J)RYTI(] )%
TO(PST(T,3+1)-PSI(1,4=-1))/(2.0%DLTZ)) YADLTY/YTSQ(T)
CZ=(1=-ZT20J)-RNN=YTI(D)xZTL(II*((PST(T+1,J)=PST(I=-1,0))/
1(2.0*DLTY Y)Y )ADLTYARLYY/Z(YTSQCIN®CLTY?)

CALL CCEF{CR,CZ,4C1,C2,4C3,C4,C5,C64A,BVRT,CF)

DVRT=((1.0 +C1*CR)IZVRT(TI+7,J)+(1.C +C2%CRIXVRT(T1=1,J)+(BB+C4%*C])
TAVRTUT 3 J+1 )+ (REB+CS#CZI®VRT (1 ,J~1)
2 =(A+ C3*CR + C6%CZ )%VRT(1,J))/CF

VRT{I,J)=VRT(T,J)+DVRT

TF(ABS(DVRTLD)-ABS(LCVRT))S57,57,58 1PF02000
DVRTLD=DVRT 1PF02010
ITVv=1

JTv=J

CONT INUE 1PF020720
IT=1C

IFL=TLMN

[PL=IL+ICMN

GO TO (994,993),MN

JI1=J2+1

JFL=J3-1

MN=1

GC 70 990

IF (KL4-2) 85,75,85

DC 70 1=2,TCMN



[47

VRT(1,1)¥=VRT (1,3)
70 VRT({1,JL+1)=VRT(I,JL-1)
85 RETURN
END
// EXEC FORTRAN
SUBROUTINE COEF(CR,CZ,C1,2,C3,C4,4C5,C64+A4B2,CF)
IF (CR) 71,471,772
71 Cl=-1.C
C?2=0.0
GO 70 713
72 C1=0.0
C2=1.0
73 IF (CZ) T74474,75
74 C4=-1.0
C5=0.0
GO TC 76
75 C4=0.0
€5=1.0
76 C3=C1+C2
C6=C4+C5
77 CF=A/B2+{C1l42.C2C2)*CR+{2.0%C4+CS5) *C7
RETURN
ENC
// EXEC FCRTRAN
SUBROUTINE ADI
CCMMON TCMN,IC, ICPL, TLMN, TL, ILPL 4 JIMN,JL,JLPLKLO,KLY 4KL3,KL4,KLS,
IKL7,KLL3 4KL14,KL1S5,KL16,KL19,KL20, (4 RPST,RYRT,DPS M,
2RNNSDTZ24DT2Y22{60) 4B4yCWC 3 SVRCFL,YTRN(40),Y(40),YSQ(20),
3YTI{40) s YTSQ(40),YT2(40),2T1{60),27SQ{(60),2T72(60),
4DISTL60Q)4PST(40,60)4VRT{40,60),U{4C460),W{40,60)+LN,
5PSIMAXyITV,JTVyDPSILDsDVRTILD 4DLTYH4CLTZ 3 JLRLITS,JTS,
GILBPLyJ2 ¢ IMVMNGINGINFLyJI3 4P {40,60) s FLyLENGTHyLNUN,NT,
TAL(60) A2(40),A3(6C) A4{40) DLTT 4KLIOyNMAX] 4 WMAX ,TIME
REAL LENGTH
DIMENSICN VRTN(40,60),A(60),BN(60),CN(60),0(60),X{60)




gL

SWEEP IN T DIRECTICN

C2=1.0/CT2Y

DO 20 I=2,ILMN

GO 7O (10,+5),KL4

IF (I-ICMN) 1041046

JI=42

JFL=J3

JEI=JFL=-JT+]}

G0 70 11

10 JI=2
JEL=JL
JFI=JLMN

11 A{1)=0.0
BN{1)=1.0
CN({1)=0.0
D{1)=VRT(1,J1)
A(JFI)=C.0
BN(JFT)=1.0
CN(JFI)=0.0
DIJFIV=VRT(I,JFL)

o

JEIFL=JFI-1

J=JT1

DO 15 JJ=2,JFIFL
J=J+1

C1=ZTSCUJ)/DTZ2
C3= (RNN%ZTYI(J)*(PST{I+1,J)=PSI{I=1,J))/(2,0%DLTYI+ZT2(1))/
1(2.0%0LT2Z)
Ca=(-RNN*(PSI(I,J+1)=-PSYT(TI,J-1}))/(2.0%DLTZ))/DLTY
AltJJi=Ccr-C3
BNUJJ)==2.0%C1 =2 0*RNN/DLTT
CN{JJ)=C1+C3
15 D(JJY==A(JIIAVRT(T,J=1)=CN{JIIXVRT(T4J+1)=(CHC+CLIXVRT(I+1,44)=
1(CWC=CaI*VRT(I=-1,J)+VRT{I,J)*(2.0%C142.0%CWC=-2.,0*RNN/CLTT)
IF {NT=1) 16414,16
14 BC 50 JJ=2,JFTFL



¥L

50 0(JJ1=0.0

16 CALL SOLVE(AGBN,CNyCoX,JFI)
J=J1-1
NDC 17 JJd=1,JFI1
J=J+1

17 VRTN(I,J)=X(JJ)

20 CONTINUE

SWEEP IN J DIRECTION

aXeNe]

DO 40 J=3,JLMN
IFL=TL
GO TQ (20,25),KL4
25 1F {(J=-J2) 27427426
26 IF (J=J3) 30,27,.27
27 IFL=1IC
30 Al1)=0.0
BN(1)=1.0
CN(1)=0.0
DEYI=VRT(1,4)
DITFL)=VRT(IFL,J)
ALTFL)=0.0
BN(IFL)=1.0
CNIUIFL)=0.0
IFLMN=T1FL-]
DO 35 1=?2,1IFLMN
Ca=({~-RNN#=(PST(1,J+¢1)=PST(T,J-1))/(2.0%CLTZ))/OLYY
A(1}=C2-C4/2.0
BN(I)==CWC=2.0*%RNN/CLTT
CN{T1)=C2+C4/2.C
35 D{I)=A(T)*=VRT{I-1,J)4CNCTIIRVRT{TI 41 ,J)=CWCHVRT(],4J)~2, CXRNNX
IVRTN{T,,J)/0DLTT
IF (NT-1}) 3£,24,36
34 DO 60 1=2, IFLMN
60 D(I)==2.0%RNN*VRTN(I,J)/0LTT
36 CALL SOLVE(A,BN,CN,yD,X,IFL)




Gl

DO 37 1=1,1FL
37 VRTN(I,J) =X(T1}
40 CONTINUE
DO 45 1=2, ILMN
DC 45 J=3,JLB
45 VRT(I,J)Y=VRTNI(I,J)
RETURN
END
// EXEC FDRTRAN
SUBROUTINE SOLVE(A+ByCyDyXeN)
DIMENSICON A(E0),B(560),C(60),0(60), X{60)
C(1y=C(1)/8(1)
DO S 1=2,N
BlI)=B{I)-A(II%C(1-1)
S C{I)=C(T1)/B(1)
D(1)=D(1)Y/B(1)
DC 10 I=2,N
10 DUT)=A(C(T)=-A(1IAD(1I-1))/B(])
X{N)Y=D(N)
NN=N-1
DN 15 IT=1,NN
I=N=1I1
15 X(I)=D(I)=C{I)%X{T+1)
RETURN
END
// EXEC FORTRAN
SUBROUTINE CHRT
COMMON ICMNGIC TCPLeTIMNaTL,ILPL o JIMNGJLyJLPL KLO9KLYoKL3,KL&,KL 5,
IKL7,KL13,KL14,KL1S,KL164KL19,XL20,C,8PST,BVRT,DPSIM,
Z2RNNyDTZ2,DT2YZ7(60) 4By CWC,SVRCFL,YTRN{40),Y(40),YSQ(40),
3YTL1(40) 4 YTSQ(40),YT2{40) ,ZT71(A0)+ZTSG(60),2T72(60),
GDIST(60)4PST(40460)4VRT{40460)Y4U(LC,60Y4W(4C,60)4LN,
SPSIMAX T TVedTV,,OPSTLD OVRTLD «DLTY L, CLTZ4JLB,ITSHJTS,
ABJLBPLy J23 IMMNy UMy UMPL 3 J34P(40,60) ¢ FLWLENGTHZLNUN,NT,
TAL1{60)4A2(40),A3(60),A4(40)+DLTTyKLIONMAX 1, WMAXTIMF
REAL LENGTH



9L

10
11
990

20

393

994
31033
35

40

190
41

310358
3103&
185

MN=KL4&

11=2

TFL=ICMN

Ji=2

IF (KL4-2) 10,11.1C
JI=3

JEL=JL8

DO 20 J=JT1,JFL
DC 20 I=11,I1FL
Wit,Jd)=
Ui{l,Ji=

11=1IC

TFL=TLMN

GO TO (994,993),MN

JI1=J2+1

JFL=J3-1

MN=1

GC TC 990

IF ((KL1&)=(1)) 41,321023,41

DC 35 J=1,J4L

DIST(J)=DISTL{I).LENCTH

DO 40 I=1,TL

Y{I)=Y(T)*{ ENGTH

N0 40 J=1,JL

UlT,J)=U(T,J)%PSIMAX/LENGTH
WlTsd)=W(Tl,J)%PSTIMAX/LENGTH

KL5=1

WRITE(3,190)

FORMAT(1H1 451X 427HRESULTS IN NDIMENSICNAL FORM,//)
CONT INUE

IF ({KL14)=(1)) 31035,31034,31035

WRITE(3,195)

CONTINUE

FORMAT(1H1 ,50X ,30HRESULTS IN NONDINMENS IONAL FORM,//)
IF KL3=¢ WRITE PST, VRT,U AND W ON UNIT 10

{F kL3=7 DC BCTH QF ARQOVE

“SYTIATIH(PST(TI+1,3)-FST(1=-1,3))/(2.0%0LTY)
ITLIIX(PSTI(T,J+1)=PSI(T,J=-1))/(2.0%DLTZ)

e

JICASADD

YICASAS>S

1ICASA>D>

A ot
I e re ] A

A AL B LA




PV

B S R iy

LL

ISR o

IF (KL3-6) 601, 602, 601

601 IF (KL3-7) 603, 602, 603
602 REWIND 10

603

42
31037
3103¢

200

205

997
1000
1001
31038
1002
359

210

220

31044
225

230
43

1
2
3

WRITE (10) (0 PSI(I4J)aI=1,1I0), J=1,JL,
(0 VRTIT,J)oT=1,I0), J=1,JL) ,
({ WiTeJd)yI=1,T0), J=144L),
: (¢ Ul .JYsI=1,11)y J=1,JL),TIME
REWIND 10
CCNT INUE
ILri=1
IL12=6
IF (UILI2)-(TIL))> 31036,31036,31037

TLI2=1L

1L120=1L12

WRITE(3,200) (Y(1),1=ILI1,ILI2)
FORMAT (24X, 4HY(T) 41X, 1P6E1T. T}
WRITE(3,205)
FORMAT(// 33X s1HJ 46X o THDIST(J),/)

D0 45 J=1,JL

ILI2=1L12D

GO TO (S99,957) ,KL4

I (J-J2) 1001,100C,1000

IF {J-J3) 999,999,1001

IF (ILI1-1IC) 31038,31038,44

IF (ILI2-1C) ©99,366,1002

1L12=1C

WRITE(3,210) J,DISTLI) o (UCT,J),1=TLI1,TLT2)
FORMAT {2X 912, 1PE164646Xy LHUy 2X4 6E1T07)
WRITE(2,220) (W(I,J),I=ILT1,ILI2)
FORMAT (26X, 1HW 32Xy 1PEETT, T)

IF ((KL5)=(1)) 31044,43,31044
WRITE(2,225) (PST{I1,J),1=ILT1,1L12)
FORMAT (25X 5 3FPST,1X,1P6E17.7)

WRITE (3,230) (VRT(T1,4),1=TL11,1L12)
FORMAT (25X, 3HVRT, 1X,1P6E17.7)

WRITE (3,235)

1ICASAD>S
VICASAD>D

YICASADD
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235
44
250
45

31045

237
46
240
420
31047
31046
342
31049
31048
310

315
345

31050

346

FORMAT (/)

GQ TC 45

WRITE (3,250)

FORMAT L/ //177)

CONTINUE

IF ((TLI2D)=-(1IL)) 2104%,46,46
ILIL=1L120D+1

TLI2=IL12D+¢

WRITE (3,237)

FCRMAT(1HY)

GO TO 42

CONT INUF

WRITE (2,240) PSIMAX

FORMAT (/ /44Xy THEPSIMAX=1PE17.7)
IF ((XL3)-(1)) 31047,31046,31047
RETURN

ILit=1

ILr2=5

IF ({ILTI2)=-(IL)) 31C48,31048,31049
ILI2=1L

NG 345 J=1,J4L )
WRITE(2,310) Jo(ULT,0),T=TLT1,ILI2)
FORMAT(1X412+1X+1P5EL15.7)
WRITE(Z,:‘”.S) (H(IyJ)vI=ILIIv[LIZ,
FCRMAT (4X41P5F15.7)

CONTINYE

IF ((TILTI2)=-(TIL)) 31CS50+346,4346
ILT1=1L12+1

ILI2=1LT12¢5

GO TO 242

CCNTINUE

RETURN

END

iR S A R g

)ICASA>>

YICASADD

YICASASD
YICASASD

Y1CASAD>D

1PF03990
1PF04000
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